Abstract

Adenosine and nitric oxide (NO) are important local mediators of vasodilatation. The aim of this study was to elucidate the mechanisms underlying adenosine receptor-mediated NO release from the endothelium. In studies on freshly excised rat aorta, second-messenger systems were pharmacologically modulated by appropriate antagonists while a NO-sensitive electrode was used to measure adenosine-evoked NO release from the endothelium. We showed that A1-mediated NO release requires extracellular Ca2+, phospholipase A2 (PLA2) and ATP-sensitive K+ (KATP) channel activation whereas A2A-mediated NO release requires extracellular Ca2+ and Ca2+-activated K+ (KCa) channels. Since our previous study showed that A1- and A2A-receptor-mediated NO release requires activation of adenylate cyclase (AC), we propose the following novel pathways. The K+ efflux resulting from A1-receptor-coupled KATP-channel activation facilitates Ca2+ influx which may cause some stimulation of endothelial NO synthase (eNOS). However, the increase in [Ca2+]i also stimulates PLA2 to liberate arachidonic acid and stimulate cyclooxygenase to generate prostacyclin (PGI2). PGI2 acts on its endothelial receptors to increase cAMP, so activating protein kinase A (PKA) to phosphorylate and activate eNOS resulting in NO release. By contrast, the K+ efflux resulting from A2A-coupled KCa channels facilitates Ca2+ influx, thereby activating eNOS and NO release. This process may be facilitated by phosphorylation of eNOS by PKA via the action of A2A-receptor-mediated stimulation of AC increasing cAMP. These pathways may be important in mediating vasodilatation during exercise and systemic hypoxia when adenosine acting in an endothelium- and NO-dependent manner has been shown to be important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.