Abstract

The present investigation was designed to evaluate whether end-stage cardiac failure in patients affected by dilated cardiomyopathy (DC) was dependent upon extensive myocyte cell death with reduction in muscle mass or was the consequence of collagen accumulation in the myocardium independently from myocyte cell loss. In addition, the mechanisms of ventricular dilation were analysed in order to determine whether the changes in cardiac anatomy were important variables in the development of intractable congestive heart failure. DC is characterized by chamber dilation, myocardial scarring and myocyte hypertrophy in the absence of significant coronary atherosclerosis. However, the relative contribution of each of these factors to the remodeling of the ventricle is currently unknown. Moreover, no information is available concerning the potential etiology of collagen deposition in the myocardium and the changes in number and size of ventricular myocytes with this disease. Morphometric methodologies were applied to the analysis of 10 DC hearts obtained from patients undergoing cardiac transplantation. An identical number of control hearts was collected from individuals who died from causes other than cardiovascular diseases. DC produced a 2.2-fold and 4.2-fold increase in left ventricular weight and chamber volume resulting in a 48% reduction in mass-to-volume ratio. In the right ventricle, tissue weight and chamber size were both nearly doubled. Left ventricular dilation was the result of a 59% lengthening of myocytes and a 20% increase in the transverse circumference due to slippage of myocytes within the wall. Myocardial scarring represented by segmental, replacement and interstitial fibrosis occupied approximately 20% of each ventricle, and was indicative of extensive myocyte cell loss. However, myocyte number was not reduced and average cell volume increased 2-fold in both ventricles. In conclusion, reactive growth processes in myocytes and architectural rearrangement of the muscle compartment of the myocardium appear to be the major determinants of ventricular remodeling and the occurrence of cardiac failure in DC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.