Abstract

In our previous research, we have developed a new combination disinfectant, glutaraldehyde-didecyldimethylammonium bromide (GD). It was verified that GD had a strong effect on both Escherichia coli and Staphylococcus aureus. In this work, Candida albicans was selected as an object, and it could be killed by GD. We aimed to investigate the cellular and molecular mechanism of GD effecting on C. albicans. The results of sterilization experiment indicated that GD was effective on C. albicans. Flow cytometry and atomic absorption spectrometry were applied to detect cell membrane damage of C. albicans. Luciferase reaction and Bradford method were carried out to detect ATP content and protein quantitation. Transmission electron microscopy was used for intracellular organelles morphological observation. In order to study changes in mitochondrial membrane potential, Rh 123 was used as an indicator. DNA conformation analysis was performed by molecular modelling and circular dichroism. The results indicated that membrane permeability was increased rapidly owing to GD effect, and the leaked K+ and Mg2+ were about 12·1 and 12·4 times those of the control, respectively, at 10min after GD treatment. Simultaneously, ATP and protein also leaked rapidly out of the cell. Mitochondrial membrane potential was destroyed, succinic dehydrogenase activity was significantly decreased and DNA conformation was changed because of GD action. Glutaraldehyde-didecyldimethylammonium bromide disinfected C. albicans through distorting cell membrane integrity and permeability, disturbing the intracellular homeostasis by intracellular substances leakage, especially K+ , Mg2+ , ATP and protein, causing electrolyte imbalance of mitochondria, changing DNA structure, which finally led to cell death. This study focused on the cellular and molecular mechanism of GD as a disinfectant against C. albicans. It is important to provide theoretical support to GD against Candida albicans in practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.