Abstract

Developing the cell-impermeable Ru(II) polypyridyl cationic complexes as effective photosensitizers (PS) which have high cellular uptake and photo-toxicity, but low dark toxicity, is quite challenging. Here we found that the highly reactive singlet oxygen (1O2) can be generated by the irradiation of a typical Ru(II) polypyridyl complex Ru(II)tris(tetramethylphenanthroline) ([Ru(TMP)3]2+) under visible light irradiation by ESR with TEMPO (2,2,6,6-tetramethyl-4-piperidone-N-oxyl) as 1O2 probe. Effective cellular and nuclear delivery of cationic [Ru(TMP)3]2+ was achieved through our recently developed ion-pairing method, and 2,3,4,5-tetrachlorophenol (2,3,4,5-TeCP) was found to be the most effective among all chlorophenols tested. The accelerated cellular, especially nuclear uptake of [Ru(TMP)3]2+ results in the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and DNA strand breaks, caspase 3/7 activation and cell apoptosis in HeLa cells upon light irradiation. More importantly, compared with other traditional photosensitizers, [Ru(TMP)3]2+ showed significant photo-toxicity but low dark toxicity. Similar effects were observed when 2,3,4,5-TeCP was substituted by the currently clinically used anti-inflammatory drug flufenamic acid. This represents the first report that the cell-impermeable Ru(II) polypyridyl complex ion-paired with suitable lipophilic counter-anions functions as potent intracellular photosensitizer under visible light irradiation mainly via a 1O2-mediated mechanism. These findings should provide new perspectives for future investigations on other metal complexes with similar characteristics as promising photosensitizers for potential photodynamic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call