Abstract

Positional cues localized to distinct cell domains are critical for the generation of cell polarity and cell morphogenesis. These cues lead to assembly of protein complexes that organize the cytoskeleton resulting in delivery of vesicles to sites of polarized growth. Tea4, an SH3 domain protein, was first identified in fission yeast, and is a critical determinant of the axis of polarized growth, a role conserved among ascomycete fungi. Ustilago maydis is a badiomycete fungus that exhibits a yeast-like form that is nonpathogenic and a filamentous form that is pathogenic on maize and teozintle. We are interested in understanding how positional cues contribute to generation and maintenance of these two forms, and their role in pathogenicity. We identified a homologue of fission yeast tea4 in a genetic screen for mutants with altered colony and cell morphology and present here analysis of Tea4 for the first time in a basidiomycete fungus. We demonstrate that Tea4 is an important positional marker for polarized growth and septum location in both forms. We uncover roles for Tea4 in maintenance of cell and neck width, cell separation, and cell wall deposition in the yeast-like form, and in growth rate, formation of retraction septa, growth reversal, and inhibition of budding in the filamentous form. We show that Tea4::GFP localizes to sites of polarized or potential polarized growth in both forms, as observed in ascomycete fungi. We demonstrate an essential role of Tea4 in pathogencity in the absence of cell fusion. Basidiomycete and ascomycete Tea4 homologues share SH3 and Glc7 domains. Tea4 in basidiomycetes has additional domains, which has led us to hypothesize that Tea4 has novel functions in this group of fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call