Abstract
Background:Determination of the radiosensitivity of a specific tumor is essential to its precision tumor radiotherapy, but the measurement of cellular radiosensitivity with a routine colony forming assay is both labor- and time-consuming. An alternative option allowing rapid and precise prediction of radiosensitivity is necessary.Methods:In this study, we exposed 4 in vitro cultured cell lines to various doses of X-rays or carbon ions and then measured their radiosensitivities with a routine colony-forming assay, and monitored the kinetics of cell cycle distribution with routine propidium iodine staining and flow cytometry.Results:Based on the results, we correlated cellular radiosensitivity with a dynamic assay of cell cycle distribution, specifically, the negative correlation of cellular radiosensitivity with the accumulated G2/M arrested cells at 48 hours after exposure. The higher the proportion of accumulated G2/M arrested cells at 48 hours after exposure, the lower the radiosensitivity of the cell line, that is, the higher radioresistance of the cell line.Conclusion:These findings provide an optional application of regular cell cycle analysis for the prediction of tumor radiosensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.