Abstract

To chemically functionalize the Ti6Al4V alloy surface, a custom-made low-temperature atmospheric pressure plasma reactor device was used to polymerize heptylamine on it. The effect of different deposition times, an important process parameter, was also investigated. For each deposition time group, the surface morphology was observed via scanning electron microscopy (SEM). The surface chemical content was analyzed via X-ray photoelectron spectroscopy, and surface hydrophilicity was measured via water contact angle. The adhesion of bone marrow stromal cells (BMSCs) on the modified Ti6Al4V alloy surfaces was also observed via SEM. A quantitative evaluation of cell proliferation was performed via the Cell Counting Kit-8 assay. The results revealed that amino groups were introduced on the Ti6Al4V alloy surface via plasma-polymerized heptylamine (PPHA). The percentages of NH2/C for various deposition times (0 s, 30 s, 45 s, 60 s, 90 s, and 120 s) were 3.39%, 5.14%, 6.71%, 6.72%, 7.31%, and 7.65%. A 30 s, 45 s, and 60 s deposition time could significantly increase surface hydrophilicity with a mean water contact angle of 62.1 ± 1.6°, 65.7 ± 1.1°, and 88.2 ± 1.4°, respectively. Meanwhile, a 60 s, 90 s, and 120 s deposition time promoted BMSCs cell adhesion and proliferation. However, this promotion effect differed non-significantly among the three groups. In conclusion, the introduction of amino groups on the Ti6Al4V alloy surface exhibited surface modification and enhancement of cell adhesion and proliferation, which was partially associated with deposition time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.