Abstract

CDF II upgraded the calorimeter trigger to cope with the higher detector occupancy due to the increased Tevatron instantaneous luminosity ( ∼ 2.8 × 10 32 cm - 2 s - 1 ) . While the original system was implemented in custom hardware and provided to the L2 trigger a limited-quality jet clustering performed using a reduced resolution measurement of the transverse energy in the calorimeter trigger towers, the upgraded system provides offline-quality jet reconstruction of the full resolution calorimeter data. This allows to keep better under control the dependence of the trigger rates on the instantaneous luminosity and to improve the efficiency and purity of the trigger selections. The upgraded calorimeter trigger uses the general purpose VME board Pulsar, developed at CDF II and already widely used to upgrade the L2 tracking and L2 decision systems. A battery of Pulsars is used to merge and send the calorimeter data to the L2 CPUs, where software-implemented algorithms perform offline-like clustering. In this paper we review the design and the performance of the upgraded system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.