Abstract

Recently, we identified the CD20 homolog Ms4a8a as a novel molecule expressed by tumor-associated macrophages that directly enhances tumor growth. Here, we analyzed Ms4a8a(+) macrophages in M2-associated infectious pathologies. In late-stage Trypanosoma congolense and Taenia crassiceps infections, Ms4a8a expression was detected in hepatic and peritoneal macrophages respectively. Innate immunity in these infections is modulated by Toll-like receptor (TLR) signaling and TLR2/4/7 agonists strongly induced Ms4a8a expression in bone marrow derived macrophages (BMDMs) treated with M2 mediators (glucocorticoids/IL-4). LPS/dexamethasone/IL-4-induced Ms4a8a(+) BMDMs were characterized by strong expression of mRNA of mannose receptor (Mmr), arginase 1, and CD163, and by decreased iNOS expression. Coinduction of Ms4a8a by M2 mediators and TLR agonists involved the classical TLR signaling cascade via activation of MyD88/TRIF and NF-κB. Forced overexpression of Ms4a8a modulated the TLR4 response of RAW264.7 cells as shown by gene expression profiling. Upregulation of Hdc, Tcfec, and Sla was confirmed both in primary LPS/dexamethasone/IL-4-stimulated Ms4a8a(+) BMDMs and in peritoneal macrophages from late-stage Taenia crassiceps infection. In conclusion, we show that TLR signaling skews the typical alternative macrophage activation program to induce a special M2-like macrophage subset in vitro that also occurs in immunomodulatory immune reactions in vivo, a process directly involving the CD20 homolog Ms4a8a.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.