Abstract

The Cd0.8Zn0.2S/In2S3 porous nanotubes heterojunction is fabricated via chemical-hydrothermal method. Cd0.8Zn0.2S/In2S3 heterojunction (Cd0.8Zn0.2S/In2S3-3) exhibits a prominent enhanced photocatalytic HER activity (∼3480.91 μmol g−1 h−1, AQE of ∼12.09%) and photodegradation than single In2S3 (∼40 folds/∼10 folds) and single Cd0.8Zn0.2S (∼30 folds/∼4 folds). There, the Cd0.8Zn0.2S/In2S3 heterojunction with great potential gradient, bimetallic synergism, crystal lattice matching and visible light response can ameliorate carrier efficiency effectively, including transportation increasing, lifetime prolonging, recombination decreasing, and can be supported by the DFT. In addition, formed porous nanotubes microstructural can increase photocatalytic active sites and light reflections, and shorten carrier pathway, meanwhile maintaining a good stability. Herein, the modification of heterojunction, bimetallic synergy and hollow tubular structure can provide new sights for preparing green energy-environmental materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call