Abstract

BackgroundLeaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance.Principal FindingsWe describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism.ConclusionsThis work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.

Highlights

  • Leaf stripe disease on barley (H. vulgare) is caused by the seedtransmitted hemi-biotrophic fungus Pyrenophora graminea [(Rabenh. ex

  • We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene

  • We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death

Read more

Summary

Introduction

Leaf stripe disease on barley (H. vulgare) is caused by the seedtransmitted hemi-biotrophic fungus Pyrenophora graminea (anamorph Drechslera graminea) [(Rabenh. ex. Leaf stripe disease on barley (H. vulgare) is caused by the seedtransmitted hemi-biotrophic fungus Pyrenophora graminea (anamorph Drechslera graminea) [(Rabenh. The hyphae begin to grow intercellularly within the coleorhizae, and into the embryo structures, the roots and scutellar node, to establish infection in the seedling. During this first colonization phase the pathogen behaves as a biotroph and degrades host cell walls using hydrolytic enzymes without causing cellular necrosis [3,4,5]. Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call