Abstract

Sodium ion batteries (SIBs) fitted with high-rate and high-capacity anodes are attractive for their higher energy density and faster charging capability. However, it is still a challenge to develop high-energy SIBs with high power and long life, due to the sluggish kinetic and limited Na+ insertion in electrode materials. The inherent crystal structure and constituent element are two important factors to resolve the critical issues faced above. Taking the merits of layer-structure and middle-entropy, herein, we proposed and designed a high ion-conductive composite combing with ternary alloy and layered BixSnSb@C nanofibers, which eliminate ion migration barriers while maintaining the structural framework for superior rate property and cycle stability. Used as anode for SIBs, the multiphase BixSnSb@C with adjustable Bi content exhibits excellent Na storage capability as compared to their single phase counterpart. Specially, up to a rate of 132C (50 A g−1), the capacity is still as high as 400 mAh g−1, meanwhile, after 5000 charge and discharge cycles at a current density of 12C, the capacity still maintains 85 % of its initial capacity, which outperform the individual Bi- or SnSb-based materials. The superior electrochemical performances originate from the middle-entropy nature and layer structure of BiSnSb alloy, which can provide more channels for fast Na+ transport, and accommodate large volume changes. Besides, the activity energy and ions transport resistance of Na+ in different composites were evaluated. Furthermore, the full-cell coupled with NaNi1/3Fe1/3Mn1/3O2 as cathode was formed and a capacity retention of ∼80 % is realized in 100 cycles. The results show that the BixSnSb@C is a potential anode for fast-charging Na-ion batteries and could be used to guide the design of multi-component alloy-base anodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.