Abstract

Abstract Pump-controlled single-rod hydraulic actuators have long been the subject of intensive research toward building valve-less, more efficient systems. The main challenge is to deal with the uneven flows into and out of the differential cylinders. Over the past few years, several hydraulic circuits providing flow compensation have been proposed using hydrostatic pumps with identical input and output flows. However, one alternative solution would be to use a pump, whose input/output flow ratio matches the area ratio of the differential cylinder. Typical design and prototyping of the so-called asymmetrical pumps have been well reported previously. In this paper, we theoretically study the flow behavior in a common design of asymmetrical axial-piston pumps and demonstrate some serious internal flow characteristics that can drastically limit the performance and range of operation of these pumps. Cavitation is the main problem to be addressed, and cannot be overlooked because of the very nature of the pump design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.