Abstract

In a previous study we investigated the relation between afferent and efferent activity of the arterial baroreceptor reflex under nonpulsatile systemic circulation using total left heart bypass. The results indicated that the regulation of the arterial baroreceptor reflex was converted under nonpulsatile systemic circulation, and we inferred that a possible reason for this conversion was the transformation in discharge of the afferent activity of the arterial baroreceptor reflex that took place under nonpulsatile systemic circulation. In the present study we tested this hypothesis by sectioning carotid sinus and aortic depressor nerves and electrically stimulating bilateral aortic depressor nerves under anesthesia in five rabbits (400 spikes for 20s, with 0.02ms pulse width and 8 V amplitude), while recording changes in aortic pressure, mean aortic pressure, and heart rate. Continuous stimulation was taken as discharge of the afferent activity of the arterial baroreceptor reflex under nonpulsatile systemic circulation, and periodic stimulation was taken as discharge under natural pulsatile circulation. Aortic pressure, mean aortic pressure, and heart rate decreased under both continous and periodic stimulation. The decreases in mean aortic pressure and heart rate during continuous stimulation were significantly lower than those during periodic stimulation. Our results suggest that the transformation in discharge of the afferent activity of the arterial baroreceptor reflex under nonpulsatile systemic circulation may have played an important causative role in the conversion of the regulation of the arterial baroreceptor reflex under nonpulsatile systemic circulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call