Abstract

Cellulose has been discovered as a smart material, which is termed as electro-active paper (EAPap). EAPap actuator revealed large displacement upon low actuation voltage and low electrical power consumption. However, the performance of the actuator was reduced as the actuation time increased. To investigate the performance degradation of the actuator, field emission scanning electron microscope (FESEM) images were taken on the surfaces of gold electrode of the actuator, and energy dispersive spectroscopy (EDS) was performed on them. Nanoparticles and nanoholes were observed on the surfaces of gold electrode after actuation, which might be strongly associated with the degradation of the actuator performance. The compositions of nanoparticles were gold and sodium. The degradation rate of the actuator performance and the number of nanoparticles at a low actuation frequency (2 Hz) were larger than those of a higher frequency (5 Hz). As the actuation voltage increased, the actuator performance degraded rapidly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.