Abstract

We solve the Cauchy problems for p-adic linear and semi-linear evolutionary pseudo-differential equations (the time-variable t ∈ R and the space-variable x ∈ Q p n ). Among the equations under consideration there are the heat type equation and the Schrödinger type equations (linear and nonlinear). To solve these problems, we develop the “variable separation method” (an analog of the classical Fourier method) which reduces solving evolutionary pseudo-differential equations to solving ordinary differential equations with respect to real variable t. The problem of stabilization for solutions of the Cauchy problems as t → ∞ is also studied. These results give significant advance in the theory of p-adic pseudo-differential equations and can be used in applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.