Abstract

In this paper, we study the degenerate convective Cahn-Hilliard equation, which is a special case of the general convective Cahn-Hilliard equation with $M(u,\nabla u)=diag(0,1,\ldots ,1)$. We obtain the uniform a priori decay estimates of a solution by use of the long-short wave method and the frequency decomposition method. We prove the existence of the unique global classical solution with small initial data by establishing the uniform estimates of the solution. Decay estimates are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.