Abstract
The coefficient of the gradient is allowed to be discontinuous but is assumed to satisfy a âone-sidedâ Lipschitz condition. This condition insures the pathwise uniqueness of the underlying Markov process which in turn yields the existence of a unique stable generalized solution of the parabolic equation. If the data is Lipschitz continuous, then so is the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.