Abstract

We examine the question of the minimal Sobolev regularity required to construct local solutions to the Cauchy problem for the Benney--Luke (BL) and generalized Benney--Luke (gBL) equations. As a consequence we prove that the initial-value problems are globally well-posed in the energy space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.