Abstract

The steady state passive efflux of salt from human red blood cells was measured in various low ionic strength media in which the osmotic pressure ranged from 200 to 600 milliosmolar. Sucrose was used as the nonpenetrating nonelectrolyte. If the flux is plotted against the log of the salt concentration, the data for each tonicity can be fitted by three straight-line segments separated by two sharp inflections, one at low external salt concentrations (0.1 to 0.3mM), confirming observations of LaCelle and Rothstein, and a second at higher salt concentrations (20 to 50 mM). As the osmolarity of the medium is increased, the inflection in every case seems to be uniquely determined by the membrane potential calculated from the Nernst equation with use of the chloride ratio. One inflection occurs at about 45 mV and the second at 170 mV in experiments at five different tonicities. Calculations from the Goldman equation suggest that the inflections represent potential-dependent changes to new permeability states. The osmotic pressure of the medium also influences the permeability. The coefficient is systematically reduced as the osmotic pressure is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.