Abstract

Catheter based procedures are typically guided by X-Ray, which suffers from low soft tissue contrast and only provides 2D projection images of a 3D volume. Intravascular ultrasound (IVUS) can serve as a complementary imaging technique. Forward viewing catheters are useful for visualizing obstructions along the path of the catheter. The CathEye system mechanically steers a single-element transducer to generate a forward-looking surface reconstruction from an irregularly spaced 2-D scan pattern. The steerable catheter leverages an expandable frame with cables to manipulate the distal end independently of vessel tortuosity. The tip position is estimated by measuring the cable displacements and used to create surface reconstructions of the imaging workspace with the single-element transducer. CathEye's imaging capabilities were tested with an agar phantom and an ex vivo chronic total occlusion (CTO) sample while the catheter was confined to various tortuous paths. The CathEye maintained similar scan patterns regardless of path tortuosity and was able to recreate major features of the imaging targets, such as holes and extrusions. The feasibility of forward-looking IVUS with the CathEye is demonstrated in this study. The CathEye mechanism can be applied to other imaging modalities with field-of-view (FOV) limitations and represents the basis for an interventional device fully integrated with image guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.