Abstract

We show that the two-sided two-cosided Hopf modules are in some case generalized Hopf modules in the sense of Doi. Then the equivalence between two-sided two-cosided Hopf modules and Yetter—Drinfel’d modules, proved in [8], becomes an equivalence between categories of Doi—Hopf modules. This equivalence induces equivalences between the underlying categories of (co)modules. We study the relation between this equivalence and the one given by the induced functor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.