Abstract
The catalytic subunit of telomerase (TERT) is a specialized reverse transcriptase that has been associated with cell immortalization and cancer. It was reported recently that TERT is expressed in neurons throughout the brain in embryonic and early postnatal development, but is absent from neurons in the adult brain. We now report that suppression of TERT levels and function in embryonic mouse hippocampal neurons in culture using antisense technology and the telomerase inhibitor 3' -azido-2' 3' -dideoxythymidine significantly increases their vulnerability to cell death induced by amyloid beta-peptide, a neurotoxic protein believed to promote neuronal degeneration in Alzheimer's disease. Neurons in which TERT levels were reduced exhibited increased levels of oxidative stress and mitochondrial dysfunction following exposure to amyloid beta-peptide. Overexpression of TERT in pheochromocytoma cells resulted in decreased vulnerability to amyloid beta-peptide-induced apoptosis. Our findings demonstrate a neuroprotective function of TERT in an experimental model relevant to Alzheimer's disease, and suggest the possibility that restoration of TERT expression in neurons in the adult brain may protect against age-related neurodegeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.