Abstract

Alanine mutations of the proposed catalytically essential residues in histoaspartic protease (HAP) (H34A, S37A and D214A) were generated to investigate whether: (a) HAP is a serine protease with a catalytic triad of His34, Ser37 and Asp214 [Andreeva N, Bogdanovich P, Kashparov I, Popov M & Stengach M (2004) Proteins55, 705-710]; or (b) HAP is a novel protease with Asp214 acting as both the acid and the base during substrate catalysis with His34 providing critical stabilization [Bjelic S & Aqvist J (2004) Biochemistry43, 14521-14528]. Our results indicated that recombinant wild-type HAP, S37A and H34A were capable of autoactivation, whereas D214A was not. The inability of D214A to autoactivate highlighted the importance of Asp214 for catalysis. H34A and S37A mutants hydrolyzed synthetic substrate indicating that neither His34 nor Ser37 was essential for substrate catalysis. Both mutants did, however, have reduced catalytic efficiency (P < or = 0.05) compared with wild-type HAP, which was attributed to the stabilizing role of His34 and Ser37 during catalysis. The mature forms of wild-type HAP, H34A and S37A all exhibited high activity over a broad pH range of 5.0-8.5 with maximum activity occurring between pH 7.5 and 8.0. Inhibition studies indicated that wild-type HAP, H34A and S37A were strongly inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride, but only weakly inhibited by pepstatin A. The data, in concert with molecular modeling, suggest a novel mode of catalysis with a single aspartic acid residue performing both the acid and base roles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.