Abstract

The effect of alloying Cu and Pd on the reactivity pattern for formic acid and for ethanol has been examined. The electronic structure of the material is strongly affected by the alloying, with the d-band lowered in energy and filled, compared with Pd alone. Hence the reactivity would be expected to be strongly affected by the alloying. This appears to be the case for formic acid decomposition, whose decomposition temperature in temperature-programmed desorption is shifted by alloying and is between the temperatures for the individual components (at 350 K, compared with 250 and 470 K for Pd and Cu, respectively). However, when a different molecule is chosen as the probe of surface reactivity, namely, ethanol, we come to a very different conclusion. Here the individual reactivity patterns for the two elemental components of the alloy are seen, namely, dehydrogenation on the Cu (to produce acetaldehyde) and decarbonylation on Pd (to methane and CO). There are effects of alloying on destabilizing the former pathway and stabilizing the latter, but the major conclusion from this work is that it is not average electronic structure that dictates reactivity but the individual atomic nature of the surface components. Only monodentate adsorbates truly probe this behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.