Abstract

Titania-supported vanadia (V/Ti/O) systems were modified by addition of cesium oxide for application as catalysts in the selective oxidation of o-xylene to phthalic anhydride (PA). Catalytic tests demonstrated that cesium is a strong promoter of the activity and selectivity to PA, but this effect is evident only under well-defined reaction conditions. Samples with a Cs content lower than 0.35 wt.% Cs 2O exhibited a considerable increase in conversion as compared with the undoped V/Ti/O system. Catalytic tests made with varying o-xylene and oxygen concentrations in the feed demonstrated that in Cs-doped V/Ti/O catalysts the rate-determining step is the re-oxidation of vanadium by molecular oxygen. Thermal-programmed reduction (TPR) and thermal-programmed re-oxidation (TPO) tests evidenced that the addition of Cs decreases the vanadium reducibility and increases the re-oxidizability of the reduced vanadium sites. The positive effect of Cs on selectivity to PA was evident only for o-xylene concentrations in feed lower than 1.5 mol%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.