Abstract
Brain serotonin has been implicated in the pathophysiology of a wide spectrum of psychiatric disorders, as well as in the mechanism of action of psychotropic drugs. The aim of present study was to identify rat cytochrome P450 (CYP) isoforms which can catalyze the O-demethylation of 5-methoxytryptamine to serotonin, and to find out whether that alternative pathway of serotonin synthesis may take place in the brain. The study was conducted on cDNA-expressed CYPs (rat CYP1A1/2, 2A1/2, 2B1, 2C6/11/13, 2D1/2/4/18, 2E1, 3A2 and human CYP2D6), on rat brain and liver microsomes and on human liver microsomes (the wild-type CYP2D6 or the allelic variant 2D6*4*4). Of the rat CYP isoforms studied, CYP2D isoforms were the most efficient in catalyzing the O-demethylation of 5-methoxytryptamine to serotonin, but they were less effective than the human isoform CYP2D6. Microsomes from different brain regions were capable of metabolizing 5-methoxytryptamine to serotonin. The reaction was inhibited by the specific CYP2D inhibitors quinine and fluoxetine. Human liver microsomes of the wild-type CYP2D6 metabolized 5-methoxytryptamine to serotonin more effectively than did the defective CYP2D6*4*4 ones. The obtained results indicate that rat brain CYP2D isoforms catalyze the formation of serotonin from 5-methoxytryptamine, and that the deficit or genetic defect of CYP2D may affect serotonin metabolism in the brain. The results are discussed in the context of their possible physiological and pharmacological significance in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.