Abstract

A water-cooling centrifugal casting method was applied to cast the 7075 Al alloy to generate a much finer cast structure than that produced by conventional ingot casting methods. The effects of casting parameters, i.e., rotation speed, pouring temperature, water flow, and grain refiner, on casting structure were systematically studied so that the optimum casting condition and the solidification mechanism could be established. The typical cast structure along the thickness direction of a cast ring could be divided into four equiaxed zones, including the chill zone which is in contact with the mold wall. All zones have their characteristic grain size, morphology, and relative thickness, which are all dependent on the casting condition. The optimum casting condition yielding the finest structure available was found to be 3000 rpm, 650 °C, and sufficient water cooling. A uniform portion occupying 90 pct of the whole thickness and having a grain size of 17 μm could be achieved under such a casting condition. When a grain refiner was added, the whole ring became further concentrated with grains of fine structure. A mechanism concerning the overall effects of rapid solidification, turbulent flow, and centrifugal force has been proposed for the present casting method and might explain the zone-structure formation and the effects of the casting parameters on microstructural features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.