Abstract

ABSTRACT Energy consumption and economic growth are strongly linked. In connection, great emphasis is nowadays placed on the accuracy and efficiency of machines and measuring equipment. This study compares the effect of surface roughness on airflow through a gas ejector and a centric orifice plate. Both devices are made from the same material but using two different methods of manufacturing, conventional and additive manufacturing. The study compares, experimentally and with numerical simulation, the subcritical ejector by adjusting the distance between the nozzle outlet and the mixing chamber outlet in the range of 16.9 mm, during the primary inlet pressure control from 10 to 50 kPa. The orifice is evaluated experimentally for different pressures from 0.6 to 7 bar(g). The study evaluates the level of substitutability of conventionally manufactured devices by those produced using the additive method. At design condition, the additively manufactured ejector exhibits a 12.97% lower ejection coefficient, i.e. lower effectivity. After control optimization, the decrease is reduced to 11.66%. For the additively manufactured orifice, the measured value of the pressure difference at nominal parameters deviated by 2.17%. In the case of the orifice, substitution is possible, assuming the calibration, but the orifice has a higher-pressure loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call