Abstract

Temporal models of pitch and harmonic segregation call for delays of up to 30 ms to cover the full range of existence of musical pitch. To date there is little anatomical or physiological evidence for delays that long. We propose a mechanism by which delays may be synthesized from cross-channel phase interaction. Phases of adjacent cochlear filter channels are shifted by an amount proportional to frequency and then combined as a weighted sum to approximate a delay. Synthetic delays may be used by pitch perception models such as autocorrelation, segregation models such as harmonic cancellation, and binaural processing models to explain sensitivity to large interaural delays. The maximum duration of synthetic delays is limited by the duration of the impulse responses of cochlear filters, itself inversely proportional to cochlear filter bandwidth. Maximum delay is thus frequency dependent. This may explain the fact, puzzling for temporal pitch models such as autocorrelation, that pitch is more salient and easy to discriminate for complex tones that contain resolved partials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.