Abstract

We have applied the powerful self-consistent renormalization theory of spin fluctuations for the system CaMn2Al10 discovered in 2015 and was conjectured to be an itinerant magnet. We have calculated the inverse static i.e. (paramagnetic) susceptibility and have compared it with the experimental data (Steinke et al 2015 Phys. Rev. B 92 020413). The agreement is very good. We have calculated spin fluctuations at various temperatures and have also estimated the strength of the electronic correlation i.e. (U = 0.3136 eV) in the Hubbard Hamiltonian. Based on our quantitative explanation of the inverse static i.e. (paramagnetic) susceptibility data within the framework of self-consistent renormalization theory, we can decisively conclude CaMn2Al10 exhibits the phenomena of itinerant magnetism. Further, our density functional theory (DFT) and DFT + U calculations corroborate the strong Mn-Al hybridization which is the key to the itinerant magnetism in this system. Our estimated correlations strength will provide a foundation for further studies of itinerant magnetism in this system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.