Abstract

Moore's law for traditional electric integrated circuits is facing increasingly more challenges in both physics and economics. Among those challenges is the fact that the bandwidth per compute on the chip is dropping, whereas the energy needed for data movement keeps rising. We benchmark various interconnect technologies, including electrical, photonic, and plasmonic options. We contrast them with hybrid photonic-plasmonic interconnect(s) [HyPPI(s)], where we consider plasmonics for active manipulation devices and photonics for passive propagation integrated circuit elements and further propose another novel hybrid link that utilizes an on-chip laser for intrinsic modulation, thus bypassing electrooptic modulation. Our analysis shows that such hybridization will overcome the shortcomings of both pure photonic and plasmonic links. Furthermore, it shows superiority in a variety of performance parameters such as point-to-point latency, energy efficiency, throughput, energy delay product, crosstalk coupling length, and bit flow density, which is a new metric that we defined to reveal the tradeoff between the footprint and performance. Our proposed HyPPIs show significantly superior performance compared with other links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.