Abstract

Kimberlitic olivines typically show a continuous range in size and texture rather than two discrete populations. The cores of small euhedral olivines commonly provide the template for the final crystal shape, which in turn closely matches morphologies produced by crystallization from a moderately under-cooled magma. Cores and edges of the majority of all olivines define a continuous compositional field, which can be interpreted in terms of Raleigh crystallization. Marked chemical gradients at the olivine margins are linked to rapid physico-chemical changes to the magma associated with loss of volatiles during the late stages of emplacement. Thus, rapid crystallization of groundmass olivines would deplete the magma in Ni, but increase Ca activity. The latter would be enhanced by decreasing pressure coupled with loss of CO 2 from the carbonate-bearing kimberlite magma. For mantle olivines and the most refractory olivines in kimberlites (~ Fo 94) to be in equilibrium with bulk rock compositions matching those of Mg-rich macrocrystic and aphanitic kimberlites (Mg# ~ 88) requires a mineral-melt Mg–Fe distribution coefficient of 0.47. This is well within the experimentally determined range for this distribution coefficient in carbonate-bearing systems. In southern African post-Gondwana alkaline pipe clusters, the average bulk rock Mg# and composition of the associated most Mg-rich olivine both decrease sympathetically from the interior to the continental margin, which is also consistent with a cognate origin for the olivines. A kimberlite magma following a plausible P-T trajectory relative to the CO 2/H 2O peridotite solidus would initially experience superheating, resulting in partial resorption of early-formed olivines that crystallized on the cool conduit walls. It would become supersaturated as it crossed the carbonated peridotite “ledge”, resulting in tabular and hopper growth forms typical of euhedral olivine cores. With further ascent, the magma would once again become superheated, resulting in partial resorption of these cores. Thus, apparently complex textures and internal zonation patterns of kimberlitic olivines are predicted by a plausible magma P-T trajectory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.