Abstract

In this paper, based on matrix and curve integration theory, we theoretically show the existence of Cartesian vector solutions for the general N‐dimensional compressible Euler equations. Such solutions are global and can be explicitly expressed by an appropriate formulae. One merit of this approach is to transform analytically solving the Euler equations into algebraically constructing an appropriate matrix . Once the required matrix is chosen, the solution is directly obtained. Especially, we find an important solvable relation between the dimension of equations and pressure parameter, which avoid additional independent constraints on the dimension N in existing literatures. Special cases of our results also include some interesting conclusions: (1) If the velocity field is a linear transformation on , then the pressure p is a relevant quadratic form. (2) The compressible Euler equations admit the Cartesian solutions if is an antisymmetric matrix. (3) The pressure p possesses radial symmetric form if is an antisymmetrically orthogonal matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.