Abstract

This chapter looks at the Cartan model. Specifically, it generalizes the Cartan model from a circle action to a connected Lie group action. The chapter assumes the Lie group to be connected, because the condition that LX α‎ = 0 is sufficient for a differential form α‎ on M to be invariant holds only for a connected Lie group. It also considers the theorem that marks the transition from the Weil model to the Cartan model. It is due to Henri Cartan, who played a crucial role in the development of equivariant cohomology. The chapter then studies the Weil-Cartan isomorphism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.