Abstract
We present 2-45 μm spectra of a large sample of carbon-rich evolved stars in order to study the “30” μm feature. We find the “30” μm feature in a wide range of sources: low mass loss carbon stars, extreme carbon-stars, post-AGB objects and planetary nebulae. We extract the profiles from the sources by using a simple systematic approach to model the continuum. We find large variations in the wavelength and width of the extracted profiles of the “30” μm feature. We modelled the whole range of profiles in a simple way by using magnesium sulfide (MgS) dust grains with a MgS grain temperature different from the continuum temperature. The systematic change in peak positions can be explained by cooling of MgS grains as the star evolves off the AGB. In several sources we find that a residual emission excess at ~26 μm can also be fitted using MgS grains but with a different grains shape distribution. The profiles of the “30” μm feature in planetary nebulae are narrower than our simple MgS model predicts. We discuss the possible reasons for this difference. We find a sample of warm carbon-stars with very cold MgS grains. We discuss possible causes for this phenomenon. We find no evidence for rapid destruction of MgS during the planetary nebula phase and conclude that the MgS may survive to be incorporated in the ISM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.