Abstract
Abstract Anharmonic infrared (IR) spectra are crucial for the study of interstellar polycyclic aromatic hydrocarbon (PAH) molecules. This work aims to provide a comprehensive study of the features that may influence the accuracy of anharmonic IR spectra of PAHs so that a reliable spectrum that incorporates all necessary features for interpreting the observational IR spectra can be obtained. Six PAHs are investigated: naphthalene, anthracene, pyrene, chrysene, 9,10-dimethylanthracene, and 9,10-dihydroanthracene. The NIST spectra and high-resolution IR absorption spectra are utilized as the reference for the comparisons. The influences of different resonances and resonant thresholds are studied. Four methods for electronic structure calculations are tested. The quantitative comparisons indicate that for the NIST data, B3LYP/N07D provides the best agreement with measured spectra concerning band positions and B3LYP/cc-pVTZ is superior in the description of the relative intensities. The importance of 1–3 Darling–Dennison resonances, which are required for generating triple combination bands, is investigated through a comparison to a high-resolution experimental spectrum. For interpreting the bandwidths and profiles of the observational spectra, the temperature effects are included through the Wand-Landau random walk technique. The comparisons between calculated high-temperature anharmonic and observational spectra indicate that small and compact PAHs might be responsible for the 3.3 μm aromatic infrared bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.