Abstract

Hypertension, heart failure (HF), type II diabetes mellitus, and chronic kidney disease represent significant and growing global health issues.1 The rates of control of blood pressure and the therapeutic efforts to prevent progression of HF, chronic kidney disease, diabetes mellitus, and their sequelae remain unsatisfactory.2–5 Although patient nonadherence and nonpersistence with medications participate in this failure, especially in asymptomatic disorders, the inherent complexity of drug titration, drug interactions, and both the real and perceived adverse events collectively contribute to the failure of lifelong polypharmacy. Furthermore, therapy targeting the potentially unique contribution of autonomic imbalance is limited by the poorly tolerated systemic adverse effects of adrenergic blocking agents. Recent introduction of medical procedures, such as renal denervation,6,7 and devices such as deep brain stimulation,8 baroreceptor stimulation,9 and direct vagus nerve stimulation10 begin to address these gaps in selective patients. The contribution of excessive sympathetic nerve activity to the development and progression of hypertension, insulin resistance, and HF has been demonstrated in both preclinical and human experiments. Preclinical experiments in models of these diseases have successfully used sympathetic or parasympathetic modifications to alter the time course of their progression.11,12 Reduction of blood pressure after dorsal rhizotomy in rats with renal hypertension and reduced total body noradrenaline and muscle sympathetic nerve activity in humans after renal denervation confirm that the afferent signals from the kidney underlie some of the excessive sympathetic drive seen in these states.13,14 However, additional afferent signals may arise from sites elsewhere in the body and in particular the carotid body (CB). We propose targeting the CB in patients with increased chemosensitivity to address the underlying autonomic imbalance seen in hypertension, HF, insulin resistance, and chronic kidney disorders. ### The CB: A Peripheral Chemosensor The CB (Figure 1), the dominant …

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call