Abstract

BackgroundIn plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding.ResultsTwenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait.ConclusionsThe availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

Highlights

  • In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones

  • The in silico analysis highlighted a lack of uniformity for acronyms and gene names/classifications used in literature between different plant species

  • This analysis showed that these carotenoid genes are generally highly conserved between species, with the minimum sequence similarity being between Arabidopsis and Brachypodium for NXS (70%), and the maximum similarity observed between Brachypodium and rice for CYP97C1 (89%)

Read more

Summary

Introduction

In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. Carotenoids are organic pigments commonly present in plants, photosynthetic algae and some species of fungi and bacteria They are normally associated with thylakoid membranes of chloroplasts and often provide the yellow, orange and red pigmentation to many flowers, fruits and roots [1]. Carotenoids play an important role in photosynthesis, photo-oxidative protection [2], and represent the substrate for the synthesis of apocarotenoid hormones, such as abscisic acid and strigolactones [3, 4]. Carotenoid actions and their relation to human health and disease have been widely reviewed [5]. Carotenoids and some of their metabolites are suggested to play a protective role in a number of reactive oxygen species (ROS)-mediated conditions, such as, i.e., cardiovascular diseases, several types of cancer or neurological, as well as photosensitive or eye-related disorders.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call