Abstract
We develop an efficient and convergent numerical method for solving the inverse problem of determining the potential of nonlinear hyperbolic equations from lateral Cauchy data. In our numerical method we construct a sequence of linear Cauchy problems whose corresponding solutions converge to a function that can be used to efficiently compute an approximate solution to the inverse problem of interest. The convergence analysis is established by combining the contraction principle and Carleman estimates. We numerically solve the linear Cauchy problems using a quasi-reversibility method. Numerical examples are presented to illustrate the efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.