Abstract

BackgroundAluminum phosphide (AlP) is a well-known toxic compound used as an agricultural pesticide to prevent insect damage to stored crops. However, even if just a small amount was consumed, it caused lasting harm to the human body and, in acute concentrations, death. The current study employed cerium oxide nanoparticles (CeO2 NPs) to reduce oxidative stress and various harmful outcomes of AlP poisoning. MethodsFollowing finding effective concentrations of CeO2 NPs via MTT assay, Human Cardiac Myocyte (HCM) cells were pre-treated with CeO2 NPs for 24 h. After that, they were exposed to 2.36 μM AlP. The activity of oxidative stress and mitochondrial biomarkers, including mitochondrial swelling, mitochondrial membrane potential, and cytochrome c release, were evaluated in HCM cells. Finally, the population of apoptotic and necrotic cells was assessed via flow cytometry. ResultsAfter 24 h, data revealed that all tested concentrations of CeO2 NPs were safe, and 25 and 50 μM of that were selected as effective concentrations. Oxidative stress markers (malondialdehyde, protein carbonyl, superoxide dismutase, and catalase) showed that CeO2 NPs could successfully decrease AlP poisoning due to their antioxidant characteristics. Mitochondrial markers were also recovered by pre-treatment of HCM cells with CeO2 NPs. Furthermore, pre-treating with CeO2 NPs could compensate for the reduction of live cells with AlP and cause a diminishing in the population of early and late apoptotic cells. ConclusionAs a result, it is evident that CeO2 NPs, through the recovery of oxidative stress and mitochondrial damages caused by AlP, reduce apoptosis and have therapeutic potentials on HCM cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call