Abstract

Acute myocardial infarction (AMI) is a common cause of hospitalisation and high mortality due to lethal arrhythmias. Sarcoplasmic reticulum Ca2+ ATPase (SERCA2) and ryanodine receptor (RyR2) regulate the cytosolic Ca2+ ion concentration. Rosmarinic acid (RA) is one of the most common caffeic esters in Rosmarinus officinalis. The present study was conducted to test the hypothesis whether RA can protect cardiac function against AMI and arrhythmias induced by isoproterenol through the regulatory effect of SERCA2 and RyR2 gene expression. To this aim, male Sprague–Dawley rats were allocated into in vivo and ex vivo studies and received RA (10, 15, and 30 mg/kg; 14 days). AMI was induced by two consecutive subcutaneous injections of 100 mg/kg isoproterenol. Blood pressure (BP), heart rate, electrocardiography (ECG) parameters, plasma levels of cardiac biomarkers, and antioxidative enzymes were evaluated (in vivo study). Cardiac functions were measured in isolated hearts using Langendorff set up. Gene expressions of SERCA2 and RyR2 were measured in left ventricular heart. Isoproterenol administration showed a significant decline in BP, QRS voltage, activities of antioxidant enzymes, cardiac function, and gene expressions of SERCA2 and RyR2. The results also indicated a significant increase in heart rate, ST-elevation, cardiac biomarkers, and antioxidant enzymes. RA at 30 mg/kg dosage showed the best effect on the improvement of the mentioned factors. This study suggests that RA has potent cardioprotective effects against AMI and arrhythmia, which may be due to its ability to enhance expression of plasma antioxidant enzymes and genes involved in Ca2+ homeostasis SERCA2 and RyR2. The protective role of RA is also possibly related to its antiadrenergic effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.