Abstract

Calsequestrin-2 (CASQ2) is the main Ca2+-binding protein inside the sarcoplasmic reticulum of cardiomyocytes. Previously, we demonstrated that MEF-2 and SRF binding sites within the human CASQ2 gene (hCASQ2) promoter region are functional in neonatal cardiomyocytes. In this work, we investigated if the calcineurin/NFAT pathway regulates hCASQ2 expression in neonatal cardiomyocytes. The inhibition of NFAT dephosphorylation with CsA or INCA-6, reduced both the luciferase activity of hCASQ2 promoter constructs (-3102/+176 bp and -288/+176 bp) and the CASQ2 mRNA levels in neonatal rat cardiomyocytes. Additionally, NFATc1 and NFATc3 over-expressing neonatal cardiomyocytes showed a 2-3-fold increase in luciferase activity of both hCASQ2 promoter constructs, which was prevented by CsA treatment. Site-directed mutagenesis of the -133 bp MEF-2 binding site prevented trans-activation of hCASQ2 promoter constructs induced by NFAT overexpression. Chromatin Immunoprecipitation (ChIP) assays revealed NFAT and MEF-2 enrichment within the -288 bp to +76 bp of the hCASQ2 gene promoter. Besides, a direct interaction between NFAT and MEF-2 proteins was demonstrated by protein co-immunoprecipitation experiments. Taken together, these data demonstrate that NFAT interacts with MEF-2 bound to the -133 bp binding site at the hCASQ2 gene promoter. In conclusion, in this work, we demonstrate that the Ca2+-calcineurin/NFAT pathway modulates the transcription of the hCASQ2 gene in neonatal cardiomyocytes.

Highlights

  • In cardiomyocytes, the sarcoplasmic reticulum (SR) is the main intracellular Ca2+ reservoir

  • Our experiments showed that both MEF-2 and NFAT transcription factors are present in the CASQ2 gene proximal promoter and they physically interact with each other in neonatal cardiomyocytes

  • In order to verify if the inhibition of calcineurin/NFAT pathway reduces the CASQ2 expression in our experimental conditions, we treated neonatal rat cardiomyocytes in culture with cyclosporine A (CsA) during 12 h

Read more

Summary

Introduction

The sarcoplasmic reticulum (SR) is the main intracellular Ca2+ reservoir. The SR has a main role in the Ca2+ homeostasis control of cardiomyocytes [1]. The SR is a complex network of membranous structures constituted by longitudinal tubules interconnected by wide cisterns. Inside the SR there are Ca2+ binding proteins that play fundamental roles in the Ca2+ homeostasis [2, 3]. The concerted action of the Ca2+-binding protein calsequestrin (CASQ), the Ca2+-release channel (RyR) and the Ca2+-ATPase pump (SERCA) control storage, release, and re-uptake of Ca2+, respectively, regulating contraction and Ca2+ homeostasis in skeletal and cardiac muscles [1, 4, 5].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call