Abstract

Mucosal surfaces are protected by polymeric immunoglobulins that are transported across the epithelium by the polymeric immunoglobulin receptor (pIgR). Only polymeric IgA and IgM containing a small polypeptide called the "joining" (J) chain can bind to the pIgR. J chain-positive IgA consists of dimers, and some larger polymers, whereas only IgM pentamers incorporate the J chain. We made domain swap chimeras between human IgA1 and IgM and found that the COOH-terminal domains of the heavy chains (Calpha3 and Cmu4, respectively) dictated the size of the polymers formed and also which polymers incorporated the J chain. We also showed that chimeric IgM molecules engineered to contain Calpha3 were able to bind the rabbit pIgR. Since the rabbit pIgR normally does not bind IgM, these results suggest that the COOH-terminal domain of the polymeric immunoglobulins is primarily responsible for interaction with the pIgR. Finally, we made a novel chimeric IgA immunoglobulin, containing the terminal domain from IgM. This recombinant molecule formed J chain-containing pentamers that could, like IgA, efficiently form covalent complexes with the human pIgR ectodomain, known as secretory component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.