Abstract

The diphenylcarbazide(DPC)/Mn2+ assay [Hsu, B.-D., Lee, J.-Y., & Pan, R.-L. (1987) Biochim. Biophys. Acta 890, 89-96] was used to assess the amount of the high-affinity Mn-binding site in manganese-depleted photosystem II (PS II) membrane fragments from spinach and Scenedesmus obliquus. The assay mechanism at high DPC concentration was shown to involve noncompetitive inhibition of only half of the control level of DPC donation to PS II by micromolar concentrations of Mn at pH 6.5 (i.e., one of two DPC donation sites is inhibited). At low DPC concentration both DPC and Mn2+ donate to PS II additively. Treatment with the carboxyl amino acid modifier 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) inhibited half of the high-affinity Mn-binding site in spinach and Scenedesmus WT PS II membranes and all of the available site in Scenedesmus LF-1 mutant PS II membranes. A similar EDC concentration dependence was observed in all cases. Addition of 2 mM MnCl2 to the 10 mM EDC modification buffer provided complete protection for the Mn-binding site from modification. This protection was specific for Mn2+; six other divalent cations were ineffective. We conclude that EDC modifies that half of the high-affinity Mn-binding site that is insensitive to the histidine modifier diethyl pyrocarbonate (DEPC) [Seibert, M., Tamura, N., & Inoue, Y. (1989) Biochim. Biophys. Acta 974, 185-191] and directly affects ligands that bind Mn. The effects of EDC and DEPC that influence the high-affinity site are mutually exclusive and are specific to the lumenal side of the PS II membrane. Removal of the two more loosely bound of the four functional Mn from PS II membranes uncovers that part of the high-affinity site associated with carboxyl but not histidyl residues. We suggest that carboxyl residues on reaction center proteins are associated with half of the high-affinity Mn-binding site in PS II and are involved along with histidine residues in binding Mn functional in the O2-evolving process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call