Abstract

The oncogene product MDM2 can be phosphorylated by protein kinase CK2 in vitro 0.5-1 mol of phosphate were incorporated per mol MDM2 protein. The catalytic subunit of protein kinase CK2 (alpha-subunit) catalyzed the incorporation of twice as much phosphate into the MDM2 protein as it was obtained with the holoenzyme. Polylysine stimulated MDM2 phosphorylation by CK2 holoenzyme threefold in contrast to the alpha-subunit-catalyzed MDM2 phosphorylation which was reduced by about 66% when polylysine was added. Full length p53, but also a peptide representing a C-terminal fragment of the tumor suppressor gene product p53 (amino acids 264-393 which also harbors the CK2beta interaction site at amino acids 287-340) mimicked the polylysine effect in all respects, ie. stimulation of phosphate incorporation by CK2 holoenzyme and inhibition in the presence of the catalytic CK2 alpha-subunit. Stimulation by p53(264-393) was on the average close to twofold and inhibition in the case of the alpha-subunit-catalyzed MDM2 phosphorylation was about 40%. Phosphorylation of MDM2 by CK2 holoenzyme in the presence of the p21(WAF1/CIP1), known to be a potent inhibitor of cyclin-dependent protein kinases, also led to a significant reduction of phosphate incorporation into MDM2 indicating that p21(WAF1/CIP1) does not exclusively inhibit cell cycle kinases. Furthermore, these data add new insight into the autoregulatory loop which include p21(WAF1/CIP1), MDM2 protein, CK2 and p53.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.