Abstract

The human LINE-1/L1 ORF2 protein is a multifunctional enzyme which plays a vital role in the life cycle of the human L1 retrotransposon. The protein consists of an endonuclease domain, followed by a central reverse transcriptase domain and a carboxy-terminal C-domain with unknown function. Here, we explore the nucleic acid binding properties of the 180-amino acid carboxy-terminal segment (CTS) of the human L1 ORF2p in vitro. In a series of experiments involving gel shift assay, we demonstrate that the CTS of L1 ORF2p binds RNA in non-sequence-specific manner. Finally, we report that mutations destroying the putative Zn-knuckle structure of the protein do not significantly affect the level of RNA binding and discuss the possible functional role of the CTS in L1 retrotransposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.