Abstract

Abstract Nova Scotia during the Carboniferous lay at the heart of palaeoequatorial Euramerica in a broadly intermontane palaeoequatorial setting, the Maritimes-West-European province; to the west rose the orographic barrier imposed by the Appalachian Mountains, and to the south and east the Mauritanide-Hercynide belt. The geological affinity of Nova Scotia to Europe, reflected in elements of the Carboniferous flora and fauna, was mirrored in the evolution of geological thought even before the epochal visits of Sir Charles Lyell. The Maritimes Basin of eastern Canada, born of the Acadian-Caledonian orogeny that witnessed the suture of Iapetus in the Devonian, and shaped thereafter by the inexorable closing of Gondwana and Laurasia, comprises a near complete stratal sequence as great as 12 km thick which spans the Middle Devonian to the Lower Permian. Across the southern Maritimes Basin, in northern Nova Scotia, deep depocentres developed en echelon adjacent to a transform platelet boundary between terranes of Avalon and Gondwanan affinity. The subsequent history of the basins can be summarized as distension and rifting attended by bimodal volcanism waning through the Dinantian, with marked transpression in the Namurian and subsequent persistence of transcurrent movement linking Variscan deformation with Mauritainide-Appalachian convergence and Alleghenian thrusting. This Mid-Carboniferous event is pivotal in the Carboniferous evolution of Nova Scotia. Rapid subsidence adjacent to transcurrent faults in the early Westphalian was succeeded by thermal sag in the later Westphalian and ultimately by basin inversion and unroofing after the early Permian as equatorial Pangaea finally assembled and subsequently rifted again in the Triassic. The component Carboniferous basins have provided Nova Scotia with its most important source of mineral and energy resources for three centuries. Their combined basin-fill sequence preserves an exceptional record of the Carboniferous terrestrial ecosystems of palaeoequatorial Euramerica, interrupted only in the mid-late Viséan by the widespread marine deposits of the hypersaline Windsor gulf; their fossil record is here compiled for the first time. Stratal cycles in the marine Windsor, schizohaline Mabou and coastal plain to piedmont coal measures ‘cyclothems’ record Nova Scotia’s palaeogeographic evolution and progressively waning marine influence. The semiarid palaeoclimate of the late Dinantian grew abruptly more seasonally humid after the Namurian and gradually recurred by the Lower Permian, mimicking a general Euramerican trend. Generally more continental and seasonal conditions prevailed than in contemporary basins to the west of the Appalachians and, until the mid-Westphalian, to the east in Europe. Palaeogeographic, paleoflow and faunal trends point to the existence of a Mid-Euramerican Sea between the Maritimes and Europe which persisted through the Carboniferous. The faunal record suggests that cryptic expressions of its most landward transgressions can be recognized within the predominantly continental strata of Nova Scotia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.