Abstract

Using both the Perdew–Burke–Ernzerhof (PBE) functional and the hybrid functional of Heyd–Scuseria–Ernzerhof (HSE06), the metastability of the carbon-substitutional–carbon-interstitial (CsCi) defect in silicon has been investigated within density functional theory using the two experimentally proposed configurations of the defect. While the PBE functional predicted the defect complex to have both donor and acceptor levels, it did not predict any form of charge-state controlled metastability as was observed experimentally. In the case of HSE06 functional, the defect was found to exhibit charge-state controlled metastability in the 0 and −1 charge states with no metastability predicted for +1 charge state. The calculated binding energies for the neutral charge state indicate that the defect is a stable bound defect complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.