Abstract

The presence of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in the environment has adverse effects on environmental quality, raising the need to better constrain their fates, in particular the processes that control their production and degradation. Our aim was to improve the sensitivity of their δ13 C analysis and demonstrate the feasibility of measuring them in natural surface water. The δ13 C values of dissolved glyphosate and AMPA were determined using isotope ratio mass spectrometry (IRMS) (Delta V Plus instrument) coupled to a high-performance liquid chromatography (HPLC) unit, where glyphosate and AMPA were separated on a Hypercarb column. We demonstrated an improved sensitivity of the δ13 C analysis for glyphosate and AMPA by LC/IRMS compared with previous studies. For waters from the carbonate and silicate hydrofacies, while no pretreatment was required for the isotope analysis of glyphosate, removal by H3 PO4 acidification of dissolved inorganic carbon, that co-elutes with AMPA, was required prior to its analysis. We successfully tested a freeze-drying pre-concentration method showing no associated isotope fractionation up to concentration factors of 500 and 50 for glyphosate and AMPA, respectively. We demonstrated, for the first time, the feasibility of measuring the δ13 C values of glyphosate and AMPA in natural surface waters with contrasted hydrofacies (calcium carbonate and silicate types). This opens new fields in pesticide research, especially on the characterization of processes that control their degradation and the production of their secondary byproducts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.